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THE REGULAR CASE OF SHOCK WAVE DIFFRACTION 
ON A WEDGE PARTLY SUBMERGED IN FLUID* 

K.A. BEZHANOV 

The pattern of diffraction at the gas-liquid interface, induced by a system of on- 

coming shock waves of regular interaction in gas impinging on a wedge submerged in 

the liquid is considered. The wedge of arbitraryanglehas its apexatthe unperturbed 

interface with one of its sides at a nearly straight angle to the liquid unperturbed 

surface. The liquid is assumed only slightly compressible, which makes it possible 

to consider the problem in linear formulation by the method proposed in /l-3/. 

The normal case of shock wave diffraction on a wedge submerged in liquid with its apex 

at the unperturbed interface, and the regular case of shock diffraction on a corner of angle 

close to straight were considered in /3/ and /4/, respectively. The findings of /3/ are ex- 

tended to the case of an arbitrary angle of incidence of a shock wave in gas in the regular 

interaction mode. 

1. Statement of the problem. A plane shock wave of arbitrary intensity moves at 

some angle to the interface of two media of greatly different densities. The shock wave is 

reflected into the lower density medium and refracted into the denser one, whiletheinterface 

becomes depressed and forms a nearly straight angle with the unperturbed state. This problem 

was considered in /5/, where a closed system of algebraic equations was obtained for the 

determination of the unknown flow parameters in regions 0, 1, and 2 (Fig.1). 

Here, the diffraction of the described system of waves on a wedge submerged in liquid 
whose one side adjoins the liquid and the other the gas. The latter may form with the un- 
perturbed free surface level an angle close to the straight one. The perturbed liquid flow 
contains the diffraction region NLH with adjacent zones with piecewise constant parameters 

defined in /3/. The perturbed flow behind the reflected shock wave in gas consists of the 
diffraction region ABCD with adjacent regions ADM and BHGC and of a stream with constant 

parameters, where the perturbations induced by the wedge in the liquid (Fig.2) do not reach. 

Flow parameters in region ADM are also constant, and are determined as a regular shock wave 
reflection from a solid wall /6/. As the basic unperturbed state parameters, we take para- 
meters behind the shock wave reflected from a solid wall whose plane coincides with the un- 
perturbed free surface level. They are: p the pressure, R the density, V, the stream veloc- 
ity parallel to the wall, a the speed of sound, u the normal velocityofthe reflected shock 
wave, and p the angle of the reflected shock wave. 

Because of the presence of the small parameter E = RIR,, where Rx is the density of 
fluid, the problem can be considered in linear formulation. In the first approximation the 
flow in the liquid is determined by pressure p, as shown in /3/, while the shock wave in gas . _ 
diffracts at the interface whose shape is known. 
similar coordinates 

Fig.1 

The gas flow is considered in moving self- 
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turned subsequently by the angle B. = ni2 j fi, where (X, Y) are fixed physical coordinates, 2 
is the time, and (z, y) moving and turned self-similar coordinates. The perturbed pressure in 
terms of polar coordinates (~~8) then satisfies the equation 

rz (1 - r2) prt -I- pee + r (1 - 2rZ) pT = 0, P -+ piW4 il.11 

within the unit circle of elliptic type and outside it of the hyperbolic type /I/. The arrow 
denotes equality with accuracy to within the symbol.. 

2. The flow of gas outside the diffraction region. Within region BfiCC the flow 
varies and is induced by the diffraction region of the liquid. To determine perturbed para- 
meters we transform (1.1) to the wave equation /7/ 

whose characteristics are the half-tangents to the Mach circle r= 1, facing in opposite direc- 
tions. The side wave ffG coincides with the first set characteristic and, generally, is tan- 
gent to the continuation of arc BC into the region ahead of the reflected shock wave. The 
reflected wave GE coincides with the second set characteristic and is tangent to the Mach 
circle at point E, it can, also, be tangent to the continuation of arc BC into the region 
occupied by the liquid and be reflected from the free surface along the first set character- 
istic. 

The solution of Eq. (2.1) in region BHGE is sought in the form p = x(p$@, The form 
of function X is determined by the condition at the gas-liquid-solid wall interface boundaryf 

pefr,-&) = -4f”(r --MI), 1 <r (rx, rw = a,/a, Ml = V,/a 

where (a, is the speed of sound in the liquid. 
For the considered here angles of the wedge a rise of the free surface level takes place 

in the neighborhood of the wedge apex, hence when M, >ithe expression f”(r-.tW2) contains the 
delta function derivative with carrier at the wedge apex, and for ---X/2 C8r.G ---ni4 also the 
regularization(r - M,)", cc> -2 which together with the regular part have been defined in/3/. 
The final solution is of the form 

WMJ 

p = - S scx3 (A. +- oo) p (set (h .+- 0,) - set (eF -/- Q,)) d;l (2.2) 

llJf-CL 

j&e = arccos TX-I, 0f -= arc cos M,_' -0, 

The solution in region CEG is sought in the form p = r,f@ i et-!-x(p -$e), Function x is 

known from the solution in region BHGE, and x is determined by the condition at the shockwave 
CG in the polar coordinate system 

E (0) or $ F(e) ps = 0, r = m see @ 

E (0) = (ml2 + B) cos 0 - m (n + A) sin 8 tg 8, mzs = 1 ---ma 

F(0) = rn-'B co&3 ctg 0 - (2m)-l (1 + if2.4) sin 28 

(2.3) 

where V is the normal component of stream velocity ahead of the reflected shock wave, a, isthe 
speed of sound behind the incident shock wave, and y is the specific heat ratio. 

Finally the solutionisof the form 
P--B 

(2.4) 

c (h) = (1 - m cos h) im (m, 2+Rf~inah-((m+A)(1 - 

m cos h)V 
D (h) = (m -COOS A) ((1 + mA) (1 -m cos h)' - m2 B Sin’hi 
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When the wedge is completely submerged in the liquid /3/, a complex system of two func- 

tional equations obtains for the determination of the form Of the unknown functions X and x 

in region ABM. 
Form of the shock wave z = m +$((y) in section CG is determined by solving the Cauchy 

problem for x = m 

Y+' (Y) --II, (Y) = --BM,-‘P (y), $ (YC) = BM,-’ P (YC), Jf, = Via 
with the quantity ‘P (Yc) determined in /!i/. 

3. The flow of gas in the diffraction region. The diffraction region is bounded 

by the reflected shock wave CD, two arcs BC and DA of the Mach circle and for Ml> 1 by 

the solid wall AB, while for M, <i by the solid wall AN and the liquid free surface NE. 
The boundary condition On the shock wave is of form (2.3) for eC <e <eD, eD = -eC = amos m. 
The boundary condition On the solid wall is of the form 

pn (r, n - e,) = 0, 0 <r -e 1, pn CT, -%I = 0, 0 <r cc M, 

and on the free surface of the liquid it is 

where 

Pn (r, - e,) = c1 (r), M, < f < 1 

c1 (r) = 6 (1 -M,) IQ' (r -M,) + V2 6 (r - MJI + 
ff"1 b-M,) 

v1 = Y, M12, va = 2y,M*, yo = f (---Ml) - tg 0.2 

n is the external normal, 6 is the Heaviside unit function, 6 is the delta function, fl’ is the 

regular part of function f" when -n!4(e (0 and the generalized function with singularity 

@' -HI)~~~> -2 when -x12 (e < ~'14, #& = 0 (&and p 2 is the angle between the wedge wall 
adjacent to the gas and continuation of the free surface level line taken with the plus sign 
in the direction of counterclockwise reading. 

The boundary condition on arc EC of the Mach circle is obtained from (2.2) and (2.4)with 
the substitution of variable of the delta function derivative /8/ 

~0 (1, e) = cp (et, -e. <e < ec, P% (1, 0) = 0, eD < 

where 
0 ce, 

cz (e) = -6 (M, - 1) hq (e - eF) + ~~6 (e - eF)] - 
sec3 (0 -t e,) f" (set (e -e,) - nf,) -6 (e - eE) x 

L (0) 2 (4 r (g t-e) -w 

v3 = y&f* (M,2- I)_‘, VP= v3@!I,*- 2)(&2- I)-% 

eA = q2 -p 

The two conditions that ensure smoothness of the shock wave front at points C and D 
and, also, the pressure change along CD by the specified amount, are of the form 

m, 

s 
.$..+z 

m, 

-+(li;i-m,)- I;(&)). 5 & fly = PD - PC (3.1) 
--WI, -** 

Application Of the Chaplygin transform /1,2/ to Eq.il.1) reduces it to the Laplace equa- 
tion, and the diffraction region is transformed in a curvilinear orthogonal tetragon of the 
plane 5 = p@ bounded by arcs of circles 

{P = P 6% ec (0 < eD), {P = 1, eB <e <eC, en <e < e,) 

and straight-line segment {p <f,e = n -e8,,e = -8,). The boundary condition for the normal 
and tangent derivatives of pressure now assume the form 

a~, 4- bp, = c 

n = D (6% b = b (0), c = 0, P = P (e), ec <e db 
a = 0, b = 1, c =o, P = 1, eD <e <% 

a = I, b = 0, c = 0, e=n-e8,, O<P<I 
a = 1. b = 0, c = 0, 8 = -en, o <PC& 
a = 1, b = 0, c = cab), 0 = -ee, PI<P<* 
a = 0, b = 1, c = c,(e), p = 1, ede <er. 

(3.2) 



so0 

where 

a (0) r r/ 1 - m*sec*0. 6(e)=Bctge--mmtg0 

c3 (P) = 6 (1 -M,) Iv8 (p - pJ + v.56 (P - PJ + je (p)l 

p1= - 
1 - 1/i -M,” 

Ml 

and the (n,s) and (5, Y) orientations coincide. 
Let us map the region bounded by the curvilinear quadrangle of the 5 plane onto the 

interior of the rectangle (0 (0 <o,,O < t <n} of plane 0 = (T + ir/4/.We have 

01 = Bl - B 
c3z=n-p-pB1 

I-fMd-ltgi3 BI= arcsin M-l 

q= 1+-1/M”-1tgp ’ IV= ml cosec fi 

We introduce the analytic function W(Ol) = 1'0 - ip, transforming by that boundary condi- 

tion (3.2) to the form of Gilbert's problem in the class of the generalized functions 

where 

+po - blp, = d 
a, = a, (T), b, = b, (~1, d = 0, 0 = UG, 0 <z <n 
a, = 1, b, = 0, d I= 0, t = n, o<a<o, 
a, = 1, 6, = 0, d = d,(~), u = 0, 0 <t <n 
al = 1, b, = 0, d d, (a), T = 0, 0 <U CO, 

aI (z) = tg@Lf jifW-- 1 (?II cos T -no) sin T, 

nzQ=l/l-((M~-l)tg*~ 

b, (7) = kg2 fim,-2M2B (A’ - m, cos 7)’ - mA (M cos T - m,)” 

d, (T) = 6 (1 -M,) [v,6' (T -T,) + v& (T - TJ + f3 @)I 

d, (n) = 6 (M, - 1) [vsS' (O - a,) + ~1~ 6 (u - u,)l - fc (cr) + 
Q (4 

(3.3) 

tl = n/2 + & - 2 arcctg (pl set PI + tg &) 

’ 1 
u'J = -z- n 

1 - COS (BF,E - Cl>) 

1 - COS (fl,, E - &) 

V7 = -vg set @, [l + sin (T* - &)I,% = vg (set &ch o1 - 

tg BJ 

and T(u), N ((J) as well as cp(u)are readily found by substituting 

sin0 = 
sin fi, cos bch 3 - cos fiXsir bsh 5 -ccos fi 

cha --sin!& 

case= 
cos &cOs fish G +sin PI sin fJch 5 -sinB 

cha-sinpl 

into the expressions for C(O),D (0) and g(--8) in (2.4). 
We write conditions (3.1) in the w plane as 

(3.4) 

T PT dt = po - PC, G = mmoM&f-lB-l ctg fi 
0 

We map the rectangle of plane 0 onto the upper half-plane of plane W = U -'- 11 
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where 6%, en, eS, 64 are elliptic theta functions /9/. The intervals (-~, -1) and (2, +m) 
correspond to the shock wave, and (-k, k), to the wall, with k denoting the elliptic integral 

modulus. The index of Hilbert’s problem (3.3) in the class of fLmCtiOW3 integrable at points 

W=+l is unity. 
We represent the canonical function in the form 

2 (Lo) = 2, (WI z, (WI 
63 (0, q) S3 (- %P! 

G(m) = (m2-- Q+=i s*jO,q) @,(_ {e,& 

2~(~(0))=exp(-_[4-_(~!n!~) 
n=1 j=l ’ 

hj=(*)“‘(~l,%&1/C~2- I), 

II 2 1= m,? i (qa - 4naml"AR - mBfil 
5 2 (?QA - mB) 

where Z,(w) has a piecewise constant argument at the boundary and eliminates discontinuities 
at points IL' = iI /2/, and z,(w) satisfies the condition on the shock wave image /4/. 

The solution of Hilbert's problem (3.3) is of the form /lO,ll/ 

Let us also write down the solution in the w plane, and use the property of the delta 

function and of its derivative as the density of the Cauchy type integral /2,12/ 

W(o)= z(o)[& + D,w{o)_1- (3.5) 

+M&%- z(S)(A(6q I,=,,+ 

-;;;A -i-+ j: ':;;; 
% 

__ if (0, s, 0) dy) + 

"("'-l)!G"$ ,E,,& (,=U,+ 

7 ~,_~~(w,)+~~~u(~'o'"L's- 
VIZ 

CIZ 

where 
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D, are obtained from conditions (3.4). 

The determination of pressure using (3.5) enables us to establish the shock wave foi-!r: 
using the pressure distribution along its front /3/. It is evident from (3.51 that pressur? 

distribution has a singularity of the first order pole at the wedge apex when TV, (Z and at 

the tangency point of the characteristic issuing from the wedge apex with the Mach circlewhen 

.+f,> 1. Then the pressure has an integrable singularity, since all integrals are taken in 

the sense of their principal values. A singularity of order higher than the logarithmic eii- 

countered in problems of diffraction on solid walls /1,2,4/, are due to the pliability of the 

liquid free surface. 
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